JUNE 18,2024

Anti-fouling strategy involving in-situ aeration and dielectrophoresis

2024-06-18 08:50

A novel method for treating oily wastewater uses superhydrophilic TiSe2 nanospheres and an electric field for in-situ aeration and dielectrophoresis. This strategy improves fouling resistance by 90% and achieves separation efficiencies of over 99% for oil-in-water emulsions. Utilizing the high salinity of seawater, the method remains effective even after four months of use.

Research proves that the innovative anti-fouling strategy with TiSe2 nanospheres and an electric field increases fouling resistance by 90%.  Source: Larisa AI - adobe.stock.com

Membrane fouling is a significant barrier to the development of membrane separation processes, particularly in the treatment of oily wastewater resulting from frequent offshore oil spills. A green and sustainable solution is imperative to address this environmental concern. This paper presents a novel method involving the in-situ growth of superhydrophilic TiSe2 nanospheres on foam titanium via a one-step hydrothermal method. Supported by an external electric field, a dual anti-fouling strategy involving in-situ aeration and dielectrophoresis was developed, resulting in a remarkably improved fouling resistance by 90 %.

Unlike prior methods focusing predominantly on developing super-wettability surfaces for passive anti-fouling, the strategy in this work leveraged the high salinity inherent in seawater to introduce in-situ aeration and dielectrophoresis forces to the filtration process. This innovative approach actively prevented oil droplets from contacting the filtration material surface, achieving effective active anti-fouling. The synthesized TiSe2/TF(TTF) demonstrated separation efficiencies of over 99 % for four different oil-in-water emulsions.


Disclaimer:The Institute of Plastic Research makes every effort to ensure the accuracy of the information, reliability of the data, and objectivity and fairness of the content and viewpoints described herein. However, we do not guarantee the accuracy and completeness of the information. Any losses or legal consequences resulting from actions taken based on this information are the sole responsibility of the individual undertaking them.

Media Contact

Luke
Head of Info Center
Contact us via WhatsApp